Calculus

Continuity

Problem 1.- Given the function defined as follows:
$h(x)=\left\{\begin{array}{rr}c x^{3} & x<1 \\ 6 & x=1 \\ -x^{2}+m x & x>1\end{array}\right.$
Is it possible to find c and m to make h continuous at $x=6$? If so, find the values.
Solution: The value of h at $x=1$ is 6 . To be continuous, the left and right limits must be 6 as well, so:

$$
\lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{-}} c x^{3}=c
$$

Which means that c must be 6 .

$$
\lim _{x \rightarrow 1^{+}} h(x)=\lim _{x \rightarrow 1^{+}}-x^{2}+m x=-1+m
$$

Which means that m must be 7 .

Problem 2.- Prove that the function is continuous on the left of $x=2$, but not on the right.
$f(x)=\left\{\begin{array}{c}x^{2} \text { if } x>2 \\ x+1 \text { if } x \leq 2\end{array}\right.$

Solution: We notice that the value of f at $x=2$ is $x+1=3$ and the limits are
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x+1=2+1=3$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} x^{2}=2^{2}=4$
Because the limit on the left is equal to the value of the function at $x=2$ then it is continuous on the left.

Because the limit on the right is not equal to the value of the function at $x=2$ then it is not continuous on the right.

Problem 3.- If f and g are continuous with $f(13)=4$ and $\lim _{x \rightarrow 13}[2 f(x)-g(x)]=13$, find $g(13)$
Solution: Since the functions are continuous, the limit at $x=13$ should be equal to the value of the functions at $x=13$, so the equation of the limits indicates

$$
\lim _{x \rightarrow 13}[2 f(x)-g(x)]=13 \rightarrow 2 f(13)-g(13)=13
$$

And solving for $g(13)$ we get
$2 \times 4-g(13)=13 \rightarrow g(13)=-5$
Problem 4.- Find the intervals where the function f is continuous
$f(x)=\frac{1}{x}+\frac{8 \sqrt{x}}{(x-9)^{2}}$
Solution: First, we notice that the domain of the function is limited to nonnegative numbers due to the square root of x, that means $x \geq 0$. Additionally, the denominator of a fraction cannot be zero, so $x \neq 0$ and $x \neq 9$.
Other than those restrictions, f is continuous in its domain, so the intervals where the function is continuous are
$\langle 0,9\rangle$ and $\langle 9, \infty\rangle$

Problem 5.- Using the intermediate value theorem, demonstrate that a solution exists $x>0$ for the following equation

$$
3^{x}=\frac{9}{x}
$$

Solution: We can observe the function f, defined as follows:
$f(x)=3^{x}-\frac{9}{x}$
We notice that this function is continuous in the range $\langle 0, \infty\rangle$.
In addition,
$f(1)=3^{1}-\frac{9}{1}=-6$
and

$$
f(2)=3^{2}-\frac{9}{2}=4.5
$$

So, $f(1)<0<f(2)$
Due to the intermediate value theorem there must be a number x in the interval $\langle 1,2\rangle$ where the function has the value zero, and that value solves the original equation.

Problem 6.- A person crosses a pass following the trajectory shown in the graph. Show that there must be a value of x , such that the distance from P_{x} to A and to B are the same.

Solution: We notice from the figure that the distances $d(P x, A)$ and $d(P x, B)$ are continuous functions of x. We define:
$f(x)=d\left(P_{x}, A\right)-d\left(P_{x}, B\right)$

We also notice that

$$
f(a)=-d(A, B)
$$

And

$$
f(b)=d(A, B)
$$

So, because $f(b)>0>f(a)$ there must be a value $b>x>a$, such that $f(x)=0$

Graphically this position can be found by drawing a normal line in the middle of the straight line from A to B and finding the intersection with the trajectory. This is because all the points on the normal line are equidistant from A and B .

